On Depth and Depth+ of Boolean Algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Depth and Depth+ of Boolean Algebras

We show that the Depth of an ultraproduct of Boolean Algebras cannot jump over the Depth of every component by more than one cardinal. Consequently we have similar results for the Depth invariant.

متن کامل

Depth of Boolean Algebras

Suppose D is an ultrafilter on κ and λ = λ. We prove that if Bi is a Boolean algebra for every i < κ and λ bounds the Depth of every Bi, then the Depth of the ultraproduct of the Bi’s mod D is bounded by λ. We also show that for singular cardinals with small cofinality, there is no gap at all. This gives a partial answer to problem No. 12 in [?]. 2000 Mathematics Subject Classification. Primary...

متن کامل

Depth Zero Boolean Algebras

We study the class of depth zero Boolean algebras, both from a classical viewpoint and an effective viewpoint. In particular, we provide an algebraic characterization, constructing an explicit measure for each depth zero Boolean algebra and demonstrating there are no others, and an effective characterization, providing a necessary and sufficient condition for a depth zero Boolean algebra of ran...

متن کامل

Depth+ and Length+ of Boolean Algebras

Suppose κ = cf(κ), λ > cf(λ) = κ and λ = λ. We prove that there exist a sequence 〈Bi : i < κ〉 of Boolean algebras and an ultrafilterD on κ so that λ = ∏ i<κ Depth(Bi)/D < Depth ( ∏ i<κ Bi/D) = λ . An identical result holds also for Length. The proof is carried in ZFC, and it holds even above large cardinals. 2010 Mathematics Subject Classification. Primary: 06E05, 03G05. Secondary: 03E45.

متن کامل

On Tightness and Depth in Superatomic Boolean Algebras

We introduce a large cardinal property which is consistent with L and show that for every superatomic Boolean algebra B and every cardinal λ with the large cardinal property, if tightness+(B) ≥ λ+, then depth(B) ≥ λ. This improves a theorem of Dow and Monk. In [DM, Theorem C], Dow and Monk have shown that if λ is a Ramsey cardinal (see [J, p.328]), then every superatomic Boolean algebra with ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra universalis

سال: 2008

ISSN: 0002-5240,1420-8911

DOI: 10.1007/s00012-008-2065-1